人工智能GIS软件技能体系初探

论文分享 | 宋关福等:人工智能GIS软件技能体系初探_技巧_空间 智能写作

宋关福1,2,3,卢浩1,2,王晨亮3,胡辰璞1,2,黄科佳1,2

1.北京超图软件株式会社,北京 100015;

2.自然资源部地理信息系统技能创新中央,北京 100015;

3.中国科学院地理科学与资源研究所,北京 100101;

A Tentative Study on System of Software Technology for Artificial Intelligence GIS

SONG Guanfu1,2,3 , LU Hao1,2, WANG Chenliang3, HU Chenpu1,2, HUANG Kejia1,2

1.SuperMap Software Company Limited, Beijing 100015, China

2.GIS Technology Innovation Center of Ministry of Natural Resources, Beijing 100015, China

3.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract: As the representative technology of Artificial Intelligence, deep learning has been the most exciting breakthrough technologies in big data analysis and other domains researches due to its novel data-driven feature representations learning, instead of handcrafting features based on domain-specific knowledge in traditional modeling. Driven by these technological developments, Artificial Intelligence plays a key role in the researches and applications of next-generation geographical information system Software Technology. Nevertheless, most researches about AI GIS are still in the stage of immature and preliminary exploration. As a method and technology for the novel architecture of GIS fundamental software, AI GIS is widely used in many earth science applications including remote sensing data analysis, water resources research, spatial epidemiology and environmental health. All these technologies are significantly improving capabilities of data processing of traditional GIS, and being able to extract geospatial information and characteristics from unstructured datasets such as street view or remote sensing imagery, texts. These applications are showing great value and developing potential of AI GIS. However, the existing research on the system of software technology of AI GIS is not comprehensive enough. A variety of AI GIS algorithms or models and their scenario-specific applications are commonly considered to be the most important topic. Few researchers have addressed the issues or theory of Artificial Intelligence GIS technologies system and software architecture. This paper presents and analyzes several levels of Geo-intelligence and discuss its relationships to AI GIS technology system , reviewed the research status in AI and GIS technologies from the domestic and abroad perspectives. Then, the system of software technology of AI GIS is proposed according to the relationships between Artificial Intelligence and GIS. This paper define the architecture of AI GIS into three parts including Geospatial Artificial Intelligence(GeoAI), AI for GIS, and GIS for AI. And concepts and examples for each parts of Artificial Intelligence GIS are also analyzed for illustration. Furthermore, in order to deeply explain and investigate the AI GIS software technologies architecture , this paper provide the example of the design and implementation of SuperMap AI GIS software architectures and production. Finally, this paper discusses the problems that need to be solved in the future development of GIS. The tentative study of AI GIS in this paper may provide a theory for establishing the fundamental GIS software technology architecture of Geo-intelligence, which would helps to promote the deep integration and development of AI and GIS technology, and make suggestions for further research about Geo-intelligence.

Key words: artificial intelligence; software technology of GIS; Geo-intelligence; AI GIS technology architecture; geospatial deep learning;geospatial machine learning;AI pipeline toolkits

Corresponding author: Song Guanfu, E-mail:songguanfu@supermap.com

择要:作为人工智能的代表性技能,深度学习已经成为大数据等各个领域中最具有打破性发展的新技能。
深度学习的成功紧张得益于其新颖的数据驱动的特色表示学习能力,这种能力成功替代了传统建模中基于领域知识人为设计特色的办法。
在这些技能推动下,人工智能技能在新一代GIS根本软件技能的研究与运用中发挥着极为主要的浸染,而现有人工智能GIS(AI GIS)技能研究整体仍处于初步探索阶段,间隔成熟阶段尚有较大间隔。
作为新一代GIS根本软件的方法和技能,AI GIS已经广泛运用在遥感数据剖析、水资源研究、空间盛行病学和环境康健等地学领域,与传统GIS模型比较大大提高了对非构造化的遥感或街景影像和文本的地理信息提取和特色理解能力,显示出巨大的代价和发展潜力,但现有研究对AI GIS软件技能体系的梳理和总结尚不足全面。
大部分研究只关注地理空间人工智能算法的研究及其特定场景下的运用研究,而对干系的AI GIS软件技能体系关注较少。
本文剖析了地理聪慧的几个层次,并谈论了其与AI GIS的关系,总体先容了国内外现有人工智能技能与GIS软件相结合的发展现状,进而提出了AI GIS软件技能体系。
根据AI与GIS的结合关系,提出了AI GIS由地理空间智能算法,AI赋能GIS和GIS赋能AI三部分组成。
此外,为深入先容AI GIS各部分组成,本文以SuperMap为例,磋商了AI GIS软件的设计与实现。
末了,磋商了AI GIS的未来发展中亟需办理的问题。
本文基于AI GIS软件技能的初步探索,考试测验为地理智能的根本GIS软件技能体系的构建供应理论根本,以促进人工智能技能与GIS技能的进一步领悟和发展,为实现地理智能供应一个可行的研究方向。

关键词:人工智能;GIS软件技能;地理聪慧;AI GIS技能体系;空间深度学习;空间机器学习;AI流程工具

1 弁言

在日益增长的运用需求牵引和日月牙异的信息技能推动下,GIS软件技能体系也正日益丰富和完善,个中,人工智能GIS(AI GIS)技能是当前主要的研究方向。
AI GIS是指将AI技能与各种GIS功能进行有机结合,包括领悟AI技能的空间剖析或空间数据处理算法(即GeoAI)以及AI与GIS的相互赋能的一系列技能的总称。
AI GIS近年来逐渐成为地学科研与运用的紧张热点[1],越来越多的学者分别从不同专业运用角度磋商AI GIS技能,如遥感图像处理[2,3],水资源研究[4],空间盛行病学[5],环境康健领域[6]等,并取得了很好的成果。
已有研究表明,AI GIS扩展了传统GIS的数据处理能力,能高效地识别和剖析街景、遥感和航拍图像、文本等非构造化数据中的地理信息[7-10];AI GIS能从多源异构的时空数据中捕捉到动态变革的繁芜时空变革关系,增强了GIS模型的剖析预测能力[11,12]。
这些研究推动了AI GIS技能的发展。

然而,多数研究紧张聚焦某个或某些运用处景下的GeoAI算法研究与运用,即领悟AI技能发展空间剖析或空间数据处理算法,较少涉及AI GIS技能体系的研究与探索,更缺少对AI GIS产品体系的论述。

本文先从地理聪慧金字塔入手,先容了地理聪慧体系的不同层次与关注点,进而构建了AI GIS软件技能体系,研究了该体系每个组成部分的内涵和示例,以SuperMap GIS为例,阐述了AI GIS软件架构及实在现。
末了,磋商未来AI GIS的发展趋势。
本研究为丰富和完善GIS根本软件核心技能理论与技能供应了参考与支持。

2 地理聪慧

AI GIS的兴起,进一步提升了地理聪慧(Geo-intelligence)。
早在2013年(AI GIS研究兴起之前),作者就提出了GIS对IT的贡献在于地理聪慧,并明确提出把 “地理聪慧创新IT代价”作为发展GIS软件技能的宗旨。
当代地理聪慧是指以GIS、遥感和卫星定位技能为根本的地理空间可视化、剖析、决策、设计与掌握的技能总称,一方面,GIS须要积极融入IT,成为IT的一部分,只有避免在狭小的专业圈子自缚手脚才能得到更广阔的发展和运用空间;另一方面,GIS必须要为IT创造不可替代的代价,才有持续存在和连续发展的情由。
而地理聪慧正是GIS差异于其他信息技能的最为独特的代价。
地理聪慧包括4个层次,并构成地理聪慧金字塔(图 1)。

图 1 地理聪慧金字塔 Fig. 1 Geo-intelligence pyramid

第1层是地理可视化,指各行业基于GIS的二维和三维的可视化能力,直不雅观清晰地反响业务数据的空间分布格局特色。
这是地理聪慧中运用最广泛的代价,不少行业早期运用GIS从地理可视化开始,并一度认为这是GIS的核心代价, 实则为最根本的地理聪慧表示。
在AI GIS体系中,AI结果可通过地理可视化深入挖掘数据代价。

第2层是地理决策,指以GIS空间剖析算法为根本,为政府、企奇迹单位和个人供应赞助决策支持的代价。
空间剖析是GIS的灵魂,地理决策是地理聪慧核心代价之一,常见于运用GIS相对深入的领域。
在AI GIS体系中,各种GeoAI算法的剖析结果,可作为决策依据。

第3层是地理设计,指基于地理空间位置和考虑地理环境的设计方法[13]。
地理设计不仅表示为宏不雅观的方案领域,当前正越来越多运用于相对更微不雅观和详细的设计领域。
比如,传统的建筑设计仅考虑被设计工具本身,地理设计则把被设计工具放入地理环境中来考虑,可以让建筑设计在采光、视野、城市形态等方面更加优化,与环境更折衷。
地理设计是在二维GIS运用为主的情形下被提出来的,在新一代三维GIS广泛运用的本日,有更广阔的运用领域和前景。
地理设计在聪慧城市等运用领域与AI GIS的各方面都有联系。

第4层是地理掌握,即基于GIS的空间剖析能力实现对环境和动物体的智能化掌握[14]。
地理掌握包括交通信号灯的自动掌握与优化、无人机的航路自动方案与自主翱翔掌握、农业与工程机器的自动路线方案与驾驶等,地理掌握当前的研究热点是乘用车辆的自动驾驶。
地理掌握常须要嵌入AI GIS中的GeoAI算法作为底层核心能力,并通过AI增强的交互与掌握功能完成智能化掌握。

地理聪慧4个层次中,自下向上繁芜度越来越高,成熟度则越来越低。
地理可视化最为根本,地理聪慧运用最为广泛,地理决策运用也相称遍及,地理设计运用也在快速发展和完善,地理掌握则运用较少,特殊是乘用车辆自动驾驶间隔成熟运用还须要多年韶光。

GIS软件技能不断发展和升级,将推进地理聪慧不断演进和发展,过去几年,新一代三维GIS技能和大数据GIS技能的发展,都不同程度推动了4个层次地理聪慧的进化。
而随着人工智能的引入,地理聪慧将会迎来新的一轮技能改造,必将进一步提升地理聪慧的能力,为IT创造更大的代价。

3 AI GIS技能体系

AI GIS技能由三部分组成,除得到广泛研究的AI GIS算法(即GeoAI)之外,还包括AI 赋能GIS和GIS赋能AI两部分(图 2)。

图 2 AI GIS技能的构成 Fig. 2 The structure of AI GIS technologies

AI GIS算法是领悟AI的空间数据剖析与处理算法,是AI和GIS充分领悟的产物,既属于AI,也属于GIS。
AI赋能GIS则是利用AI的能力提升GIS软件的功能和用户体验。
GIS赋能AI则是GIS利用其可视化和空间剖析技能,对AI算法处理其他非空间数据输出的结果进行可视化和进一步空间剖析的技能和运用。

在三类AI GIS技能中,AI GIS 算法的处理工具常日是空间数据(包括各种矢量/栅格形态的经典空间数据,和空间大数据),其余两类常日不涉及利用AI算法处理空间数据本身。

3.1 AI GIS算法

人工智能技能出身于1956年,但随后相称永劫光技能没有得到较大打破。
20世纪80年代机器学习出身后,才得到较快发展,但90年代再次进入低谷。
直到2000年机器学习中的主要分支——深度学习出身,再次推进人工智能的研究和运用热潮。
由此可见,机器学习是当古人工智能的核心,而深度学习是人工智能核心中的热点研究方向。
当前AI GIS算法由根本工具中AI流程工具(AI Pipeline Toolkits)与AI GIS算法(GeoAI)共同组成(图 3)。
个中,GeoAI分为空间机器学习(Geospatial Machine Learning)和空间深度学习(Geospatial Deep Learning)2部分算法,随着AI本身的发展,未来也可能会产生新的AI GIS算法种别。
根本工具中的AI流程工具是GeoAI算法的数据准备、模型演习和模型运用全体流程的实现工具。

图 3 AI GIS算法的构成 Fig. 3 Components of GeoAI

根据地理学第一定律,空间数据普遍存在间隔越近越干系的特性,表现为空间数据具有空间干系性和空间异质性等普遍特色[15]。
空间统打算法基于这些性子进行统计学建模,形成了空间总体特色、空间格局、空间插值、地理分布等[16]4类空间统计学算法模型(图 4)。
由于这种算法和打算模式由专家学者通过大量研究的根本上构建,先验知识被直接建模在空间统计模型中,而后被大量运用于定量剖析研究中。

图 4 部分空间统打算法 Fig. 4 Algorithms of spatial statistics

3.1.1 空间机器学习

由于空间统计学模型构建在一些理论假设上,数据须要服从或近似符合特定的空间分布或某种性子,模型才能得到可信的结果。
与统计学模型不同,机器学习是一种通用的逼近算法[17],一样平常不须要数据假设。
基于机器学习的空间剖析算法不须要先验知识,就可根据一组演习集学习地学系统的模式。

经典的机器学习技能包括神经网络(ANN)、支持向量机(SVM)、随机森林(RF)、K均值,DBSCAN等一系列方法,逐渐在城市管理、地皮利用、生态规复等地理生态领域利用[18]。
以SuperMap为例,目前已经供应的部分空间机器学习算法包括空间聚类剖析、空间分类剖析和空间回归剖析等3类(图 5)。

图 5 部分空间机器学习算法 Fig. 5 Algorithms of geospatial machine learning

3.1.2 空间深度学习

一样平常的空间机器学习技能实现繁芜性不高,打算速率较快,多适用于各种数据表格形式的空间数据的离散或连续值的剖析和预测,模型对付繁芜构造关系的学习能力较为有限。
而空间深度学习则通过反向传播算法,进行多层次特色提取,可以学习到比一样平常机器学习更深层次的抽象特色,进而创造数据的繁芜模式[19]。
以深度卷积神经网络(CNN)为代表的深度学习在图像分类[20]、目标检测[21-23]、目标追踪[24,25]、语义分割[26]和超分辨率重修[27-29]等打算机视觉任务的精良表现,为地球科学领域的未办理的干系问题供应了新的办理思路。

深度学习能从地理空间干系数据中直接学习识别韶光与空间特色,能自动高效地构建繁芜特色,使数据驱动的地球科学研究成为趋势[30],发展成为新兴的交叉学科和技能方向——空间深度学习,广泛用于遥感图像处理[31],聪慧城市[32],水资源环境[33],环境科学和公共康健[34,35]等领域,并在空气质量预测[36-38],人流拥挤预测[39-41],地物分类[42-45]、道路和建筑物提取[46,47]等许多研究中取得了较优的效果。
以SuperMap为例,目前供应的空间深度学习算法包括三维数据剖析和影像剖析2类(图 6),随着运用领域的拓展,将不断丰富算法的种类和数量。

图 6 部分空间深度学习算法 Fig. 6 Algorithms of geospatial deep learning

3.1.3 AI流程工具

模型可重现问题一贯是AI领域困扰科研界和工业界的一大问题[48,49]。
一些研究成果中呈现了高准确度GeoAI算法,但很难重现。
其缘故原由紧张为地物的空间特色在不同地域,不同时令的表现并不完备相同,因此供应演习后的模型在地理信息领域并不是最佳方案,须要供应GeoAI算法的演习工具,让运用单位可以根据自身的数据重新演习模型,提高模型推理结果的成功率和准确度。

根据机器学习的一样平常流程,结合地理空间信息的分外情形,GeoAI事情流程可分为数据准备、模型构建和模型运用3个环节(图 7)。

在数据准备阶段, AI GIS平台须要支持一些通用AI标准数据格式与GIS格式的转换,供应AI样本制作工具。
在模型构建阶段, AI模型演习的超参数等元信息与GIS软件难以集成,不同框架的模型文件格式互异,须要设计统一格式进行模型和演习信息的统一。
在模型发布和推理阶段, GIS平台须要统一的流程识别模型格式,并在GIS做事中支配、发布、管理等。

图 7 GeoAI流程 Fig. 7 GeoAI pipeline

为办理各流程环节的干系问题,GIS(如:Super-Map GIS)可供应覆盖全流程的AI流程工具,包括桌面GIS、做事器端GIS、移动端GIS等各种不同的GIS形态产品,以SuperMap为例进行解释(表1)。

表 1 SuperMap AI 流程工具

Tab. 1 SuperMap AI Pipeline Toolkits

例如,在做事器端GIS中,数据科学做事供应在线交互式Python编码办法供空间数据科学家利用,以及通过做事形式完成模型注册、发布和运用的机器学习做事。
桌面端GIS供应用户可交互操作的桌面流程工具,通过可视化交互操作的办法完成数据准备、模型构建、模型运用的机器学习流程。
组件式GIS则供应Python编码的办法给利用者,通过脚本调用形式完玉成部流程。

3.2 AI赋能GIS

领悟AI的空间数据剖析与处理算法研究得到较多关注,除此之外我们也可以利用AI技能提升GIS软件的智能化水平。
随着GIS的全空间化[50]、泛在化和空天地一体化的发展趋势,空间信息的来源已经从传统的遥感测绘逐渐发展到多种多样的形式,对GIS的数据处理能力提出寻衅[51]。
通过深度学习等人工智能技能的非构造化信息感知与提取能力,能够补充GIS在各种场景下处理新型数据源的能力,提高GIS在数据获取、处理和制图,及与用户交互的效率。
例如,AI技能可以降落GIS数据采集和测图本钱,也可以简化GIS制图和软件交互流程。
本文从AI属性采集、AI测图、 AI配图和AI交互4个方面进行详细先容。

3.2.1 AI属性采集

在城市管理司法中,须要频繁录入现场司法案件属性信息。
基于AI的图像目标检测和分类技能可以有效提高属性采集效率,如在违章停车案件中,可以快速识别车牌编号、车身颜色、车辆类型等信息,并自动完成填报。
其他司法场景如暴露垃圾、乱堆物料、造孽广告、城市部件等均可以通过AI进行识别并自动填报(图 8)。
类似的AI图像识别运用,可以大幅减少手工录入事情量,提高属性采集事情效率。

图 8 基于图像分类技能的司法案件上报 Fig. 8 Reporting of law enforcement cases based on image classi

3.2.2 AI测图

GIS中的测图技能正在逐渐从室外走向室内,而丈量精度和丈量本钱是室内测图的2个关键要素。
基于激光雷达技能的室内测图办法,丈量精度较高但丈量本钱也相对较大,且整体流程较为繁芜。
为办理该问题,可将惯性丈量单元(IMU)和打算机视觉技能相结合显著降落室内测图本钱。
该方法首先须要获取连续拍摄的室内图片,基于打算机视觉算法对连续图片进行特色点匹配,并通过特色点匹配结果还原真实空间位置,末了可以将位置信息通过坐标转换的办法映射到舆图中,实现全体AI测图过程[52,53]。
目前,在移动端GIS软件可以实现基于IMU和打算机视觉的AI测图功能,用户可以在某些运用中用普通的手机设备部分替代较为昂贵的室内测图设备,降落测图本钱。

SLAM (Simultaneous Localization and Mapping)是打算机视觉室内定位的根本[54]。
SLAM最早运用在机器人领域,其目标是在没有任何先验知识的情形下,根据传感器数据实时构建周围环境舆图,同时根据这个舆图进行自身定位。
IMU是丈量物体三轴姿态角(或角速率)以及加速度的装置,在导航中有主要运用代价。
采取基于IMU和SLAM领悟的视觉惯性系统(Visual-Inertial System,VINS),可实现低本钱的室内AI测图功能。
图9为基于VINS的特色点天生事理。

图 9 基于VINS的特色点天生 Fig. 9 Feature point generation based on visual-inertial system

VINS是领悟相机和其惯性丈量单元数据实现即时定位和舆图构建的算法[55],基于空间矩阵变换事理,结合视觉校准和惯性校准算法,实现二三维舆图在真实场景中的可视化映射。
详细打算过程包括:1)实时图像获取,摄像机坐标系标定;2)特色信息提取,立体匹配;3)空间映射重修(深度感知),得到二三维舆图在空间中的实时姿态、位置、间隔信息,实现动态空间和高清像素分辨率的精确深度检测与标定;4)设置多个掌握点,采取丈量平差的办法提高丈量精度,终极完成室内测图。

3.2.3 AI配图

舆图配图是GIS的根本能力,传统手工配图要对浩瀚舆图内容要素反复搭配与调度,较为繁芜和耗时。
图像风格迁移是在保留目标图片内容的根本上,将风格图片的色彩构成、色彩分布等整体风格迁移到目标图片上的技能。
AI配图即基于图像风格迁移思想,利用机器学习算法,对输入的图片风格进行识别和学习,结合面积权重、目标工具类型等信息,将图像风格迁移到目标舆图的一种自动化配图的技能。
桌面端GIS软件中嵌入AI配图功能,能快速将风格图片繁芜的颜色风格迁移到目标舆图上,显著提升GIS配图效率和效果。

图 10 AI配图流程图 Fig. 10 Flowchart of AI Cartography

AI配图的紧张流程(图10)包括:(1)提取风格图片关键色,首先输入选定的自定义舆图模板风格图片,基于K-means聚类算法提取图片特色,得到风格图片中的关键色。
(2)提取当前舆图关键色,紧张对原始舆图进行关键色提取。
(3)面积排序匹配。
提取关键色后,须要对提取的图片关键色和舆图关键色进行匹配,选择面积匹配算法,按照面积权重将图片的颜色自动匹配至原始舆图。

3.2.4 AI交互

在GIS软件当中,常常须要进行舆图和场景的交互操作,通过交互操为难刁难空间数据进行查询、浏览和利用。
现有的GIS系统,如SuperMap,可借助AI中的语音识别、手势识别、人体关键点检测等技能[56]实现智能化的GIS软件交互。
如图11和图12所示,基于手势识别,可以对二维舆图和三维场景进行平移、缩放、旋转等交互操作,也可以将手势识别扩展为人体姿态的识别,通过对付人体动作的关键点捕捉,识别姿态动作进行二三维舆图操控。

图 11 基于手势识别的隔空地图操作 Fig. 11 Air map operation based on hand gesture recognition

图 12 基于人体姿态识别的隔空地图操作 Fig. 12 Air map operation based on human gesture recognition

3.3 GIS赋能AI

上文紧张先容AI赋能GIS方面,运用AI技能完善和提升GIS软件功能。
另一方面,面向AI打算识别结果, GIS可以利用其空间可视化和空间剖析能力处理与挖掘数据代价,即GIS赋能AI。

3.3.1 空间可视化赋能AI

空间可视化技能是GIS的核心能力之一,GIS供应了多样化的舆图展现手段,对各种运用数据的空间分布特色和趋势进行有效表达。
可以将属性值汇总到行政区划图斑中,在舆图中展现不同区域的差异变革,也可以通过规则格网进行属性值聚合,创造高值聚拢区域,或者利用热力争对空间整体的热点分布状况进行直不雅观表达。

举例来说,视频与GIS的集成运用已经成为当前的一个研究热点,借助AI技能,可以实现摄像头视频的目标检测与追踪,也可以进行智能化的人群感知[57-60],但如果不借助GIS,很难对遍布全体区域的视频识别结果进行全局展示和综合剖析。
因此,我们可以基于空间可视化技能,将视频识别结果在舆图中进行热力争、聚合图等多种可视化效果的展示。
赞助管理职员节制整体空间趋势,探查空间非常情形,进一步挖掘视频数据的深层隐含信息。

3.3.2 空间剖析赋能AI

空间可视化技能可以赞助从整体上认识数据的分布特色,而空间剖析技能可以对AI提取结果进行深入处理与挖掘,即将空间打算过程加入到AI识别结果的进一步剖析过程当中。
例如,通过AI技能可以识别出视频数据中的各种关键目标,例如行人、机动车、公交车等,通过建立视频空间和真实地理空间的映射。
如图13所示,可以将公交专用车道占用这样的运用问题转化为地理围栏剖析,对视频内目标进行空间关系打算,创造进入公交车道的行人和机动车等违章情形。
另一方面,我们可以基于交通监控摄像头的AI识别获取目标车辆经由的多个位置以及相应韶光,基于这些信息,可以结合交通路网数据进行GIS最佳路径剖析,还原目标车辆的真实运行轨迹,做事于目标车辆的追踪运用。

图 13 地理围栏实时告警系统 Fig. 13 Geo-fencing real-time alert system

3.4 AI GIS软件技能体系

为了对AI GIS的3个方面进行有力支撑,自下向上构建了4层构造,形成较为完全的AI GIS技能体系。
如图14所示,最底层为数据层,既包括遥感影像这样的文件型数据,也包括关系型数据以及大数据场景下利用较多的NoSQL数据。
数据层之上为AI领域库,紧张聚焦样本和模型2个方面开展培植,不断丰富各种空间数据样本和模型。
在框架层中,须要通过合理的抽象和封装兼容多种AI框架,既可以避免重复性研发事情,又可以高效地与最新算法和模型研究成果进行领悟。
最上面的功能层即详细先容的AI GIS三个方面。

图 14 AI GIS技能体系 Fig. 14 AI GIS technology architecture

为了保持AI GIS软件技能体系的同等性,同时做事于多种GIS运用处景,AI技能须要与组件GIS、桌面端GIS、做事器GIS等在内的多种形态的GIS软件进行深度领悟,共同构建AI GIS产品体系。
个中,AI GIS产品体系如图15所示,产品体系的根本为组件GIS产品,由于Python为AI开拓紧张措辞,SuperMap研发了基于Python措辞的组件GIS软件iObjects Python,支持空间统计、空间机器学习与空间深度学习等功能。
为了做事大数据场景下的AI GIS功能,在面向大数据GIS的iObjects for Spark软件中添加了空间机器学习功能支持,使得剖析过程可以充分利用集群打算资源。
在桌面端GIS软件中增加了机器学习模块,用于以图形界面操作办法构建AI模型。
在做事器GIS软件中,SuperMap增加了数据科学做事(Data Science Service),通过在线交互开拓办法构建AI模型,以及机器学习做事(Machine Learning Service),用于将构建出的AI模型进行注册发布,支撑Web做事化的模型推理。

图 15 AI GIS产品架构(以SuperMap为例) Fig. 15 AI GIS product architecture (illustrated by the exam

4 结论和展望

作为新一代GIS软件技能体系的主要组成,AI GIS通过领悟AI的空间数据剖析与处理算法、AI赋能GIS和GIS赋能AI,改变了传统GIS软件处理和剖析的办法。
利用AI GIS完善发展新一代GIS技能体系是办理当前GIS系统智能化问题的有效方法。

目前,AI GIS初步实现了遥感图像、视频等地理信息的二维视觉提取。
随着打算机视觉和全空间GIS技能的发展,地理掌握、视觉导航定位中的深度图、点云等三维环境构造感知变得越来越主要,结合三维打算机视觉的智能提取将是AI GIS的下一步发展重点。

目前制图导航、地物图像识别、空间剖析等方面的AI还属于弱人工智能(Narrow AI),只能聚焦某种详细运用问题,离通用人工智能(AGI)还较为迢遥。
AGI研究有2种紧张办法:①从先天的类脑构造探求打破点[61];②往后天的演习学习为主。
实际上,二者都能取得相似效果[62],而相互结合[63]也是AI GIS实现AGI GIS的一个发展方向。

参考文献(References):

[1] Karpatne A, Ebert- uphoff I, Ravela S, et al. Machine learning for the geosciences: Challenges and opportunities [J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(8):1544-1554.

[2] Zhu X X, Tuia D, Mou L, et al. Deep Learning in remote sensing: A comprehensive review and list of esources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5: 8-36.

[3] Zhang L P, Zhang L F, Du B. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4: 22-40.

[4] Shen C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists[J]. Water Resources Research, 2018, 54: 8558-8593.

[5] Vopham T, Hart J E, Laden F, et al. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology[J]. Environmental Health, 2018, 17: 40.

[6] Kamel Boulos M N, Peng G, Vopham T. An overview of GeoAI applications in health and healthcare[J]. International Journal of Health Geographics, 2019, 18: 7.

[7] Helbich M, Yao Y, Liu Y, et al. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China[J]. Environment International, 2019, 126: 107-117.

[8] Cresson R. A Framework for Remote Sensing Images Processing Using Deep Learning Techniques[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16: 25-29.

[9] Yan X F, Ai T H, Yang M, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 259-273.

[10] Comber S, Arribas‐Bel D. Machine learning innovations in address matching: A practical comparison of word2vec and CRFs[J]. Transactions in GIS, 2019, 23: 334-348.

[11] Fan J, Li Q, Hou J, et al. A Spatiotemporal Prediction Framework for Air Pollution Based on Deep RNN[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-4/W2: 15-22.

[12] Bai Y, Zeng B, Li C, et al. An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting[J]. Chemosphere, 2019, 222: 286-294.

[13] Goodchild M F. Towards Geodesign: Repurposing Cartography and GIS?[J]. Cartographic Perspectives, 2010(66): 7-22.

[14] 钟耳顺. 地理掌握与实况地理学——关于GIS发展的思考[J]. 地球信息科学学报, 2013, 15(6): 783-792 [Zhong E S. GeoControl and Live Geography:Some Thoughts on the Direction of GIS[J] .Journal of geo-information science , 2013, 15(6): 783-792].

[15] 王劲峰, 葛咏, 李连发, 等. 地理学时空数据剖析方法[J]. 地理学报, 2014, 69(9): 1326-1326 [Wang J F, GE Y , Li L F, Meng B, Wu J l, Bo Y C, Du S H, Liao Y L, Hu M G, Xu C D. Spatiotemporal data analysis in geography[J]. Acta Geographica Sinica, 2014, 69(9): 1326-1345].

[16] 王劲峰, 廖一兰, 刘鑫. 空间数据剖析教程(第二版)[M]. 科学出版社, 2019: [Wang J F,Liao Y L, Liu X. Tutorial of Spatial Data Analysis (Second Edtion)[M]. Science Press, 2019.].

[17] Lary D J, Alavi A H, Gandomi A H, et al. Machine learning in geosciences and remote sensing[J]. Geoscience Frontiers, 2016, 7(1): 3-10.

[18] 岳天祥. 地球表层建模研究进展[J]. 遥感学报, 2011, 15(6): 1111-1130 [Yue T X. 2011. Progress in earth surface modeling. Journal of Remote Sensing, 15(6): 1105–1124].

[19] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521: 436-444.

[20] Li P, Xie J, Wang Q, et al. Is Second-Order Information Helpful for Large-Scale Visual Recognition? Proceedings of the IEEE International Conference on Computer Vision, 2017: 2089-2097.

[21] Lin T-Y, Dollar P, Girshick R, et al. Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): IEEE, 2017: 936-944.

[22] Huang J, Rathod V, Sun C, et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): IEEE, 2017: 3296-3297.

[23] Chen G, Choi W, Yu X, et al. Learning efficient object detection models with knowledge distillation[J]. Advances in Neural Information Processing Systems, 2017, 2017-December: 743-752.

[24] Zhang Z, Peng H. Deeper and Wider Siamese Networks for Real-Time Visual Tracking[C]. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[25] Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]. European conference on computer vision, 2016: 850-865.

[26] Zhou B, Zhao H, Puig X, et al. Semantic Understanding of Scenes Through the ADE20K Dataset[J]. International Journal of Computer Vision, 2019, 127: 302-321.

[27] 呼延康, 樊鑫, 余乐天, 等. 图神经网络回归的人脸超分辨率重修[J]. 软件学报, 2018, 29: 914-925 [Hu Y K, Fan X, Yu L T, Luo Z X. Graph based neural network regression strategy for facial image super-resolution. Journal of Software, 2018,29(4):914-925].

[28] Zhang Y, Li K, Li K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286--301.

[29] Dai T, Cai J, Zhang Y, et al. Second-order Attention Network for Single Image Super-resolution. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 11065--11074.

[30] Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.

[31] Li S, Song W, Fang L, et al. Deep learning for hyperspectral image classification: An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(9):

6690-6709.

[32] Zhang S, Wu G, Costeira J P, et al. FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras[C]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 3687-3696.

[33] Ren H, Cromwell E, Kravitz B, et al. Using deep learningto fill spatio-temporal data gaps in hydrological monitoring networks[J]. Hydrology and Earth System SciencesDiscussions, 2019.DOI:10.5194/hess-2019-196.

[34] Li X, Peng L, Hu Y, et al. Deep learning architecture forair quality predictions[J]. Environmental Science and Pollution Research, 2016,23(22):22408-22417.

[35] Apte J S, Messier K P, Gani S, et al. High- resolution airpollution mapping with google street view cars: Exploiting big data[J]. Environmental Science and Technology,2017,51(12):6999-7008.

[36] Qi Y, Li Q, Karimian H, et al. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory[J]. Science of The Total Environment, 2019, 664: 1-10.

[37] Wang J, Song G. A Deep Spatial-Temporal Ensemble Model for Air Quality Prediction[J]. Neurocomputing, 2018, 314: 198-206.

[38] Zhou Y, Chang F-J, Chang L-C, et al. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts[J]. Journal of Cleaner Production, 2019, 209: 134-145.

[39] Huang C, Zhang C, Zhao J, et al. MiST: A Multiview and Multimodal Spatial-Temporal Learning Framework for Citywide Abnormal Event Forecasting[C]. The World Wide Web Conference on - WWW '19, 2019: 717-728.

[40] Zhang J B, Zheng Y, Qi D K, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259: 147-166.

[41] Li Y G, Yu R, Shahabi C, et al. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting[C]. International Conference on Learning Representations (ICLR '18), 2018: 1-16.

[42] Rakhlin A, Davydow A, Nikolenko S. Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW): IEEE, 2018: 257-2574.

[43] Kuo T S, Tseng K S, Yan J-W, et al. Deep Aggregation Net for Land Cover Classification. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 252-256.

[44] Davydow A, Nikolenko S. Land Cover Classification with Superpixels and Jaccard Index Post-Optimization. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW): IEEE, 2018: 280-2804.

[45] Ma L, Li M, Ma X, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 277-293.

[46] Zhou L, Zhang C, Wu M. D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018: 192-1924.

[47] Ghosh A, Ehrlich M, Shah S, et al. Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW): IEEE, 2018: 252-2524.

[48] Olorisade B K, Brereton P, Andras P. Reproducibility in Machine Learning-Based Studies: An Example from Text Mining[C]. ICML Reproducibility in ML Workshop, 2017.

[49] Hutson M. Artificial intelligence faces reproducibility crisis[J]. Science, 2018, 359: 725-726.

[50] 周成虎. 全空间地理信息系统展望[J]. 地理科学进展, 2015, 34(2): 129-131 [Zhou C H. Prospects on pan-spatial information system[J]. Progress in geography, 2015, 34(2): 129-131].

[51] 龚健雅. 人工智能时期测绘遥感技能的发展机遇与寻衅[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1788-1788. [Gong J Y. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence. Geomatics and Information Science of Wuhan University, 2018, 43 (12): 1788-1796.].

[52] Qayyum U, Ahsan Q, Mahmood Z. IMU aided RGB-D SLAM[C]. 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2017: 337-341.

[53] Vosselman G. Design of an indoor mapping system using three 2D laser scanners and 6 DOF SLAM[J]. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., 2014, II-3: 173-179.

[54] Younes G, Asmar D, Shammas, et al. Keyframe- based monocular SLAM: Design, survey, and future directions [J]. Robotics and Autonomous Systems, 2017,98(1):67-88.

[55] Huang G. Visual- Inertial Navigation: A concise review [C]. 2019 International Conference on Robotics and Automation (ICRA), 2019:9572-9582.

[56] Tombari F, Salti S, Di stefano L. Performance Evaluation of 3D Keypoint Detectors[J]. International Journal of Computer Vision, 2013, 102(1): 198-220.

[57] 孔云峰. 地理视频数据模型设计及网络视频 GIS 实现[J]. 武汉大学学报: 信息科学版, 2010, 35(2): 133-137 [Kong Y F . Design of GeoVideo Data Model and Implementation of Web-Based VideoGIS. Geomatics and Information Science of Wuhan University, 2010, 35 (2): 133-137.].

[58] 张兴国, 刘学军, 王思宁, 等. 监控视频与2D地理空间数据互映射[J]. 武汉大学学报(信息科学版), 2015, 40(8): 1130-1136 [Zhang X G, Liu X J, Wang S N, Liu Y. Mutual Mapping Between Surveillance Video and 2D Geospatial Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1130-1136.].

[59] Lewis P, Fotheringham S, Winstanley A. Spatial video and GIS[J]. International Journal of Geographical Information Science, 2011, 25(5): 697-716.

[60] Milosavljević A, Dimitrijević A, Rančić D. GIS-augmented video surveillance[J]. International Journal of Geographical Information Science, 2010, 24(9): 1415-1433.

[61] Zador A M. A critique of pure learning and what artificial neural networks can learn from animal brains[J]. Nature Communications, 2019, 10(1): 3770.

[62] Banino A, Barry C, Uria B, et al. Vector-based navigation using grid-like representations in artificial agents[J]. Nature, 2018, 557: 429-433.

[63] Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572(7767): 106-111.