大模型、大数据的驱动让人工智能在对话的自然度、意见意义性上有了很大打破,但间隔具备自主意识还很远。
换言之,即便人工智能可以对人类的措辞、表情所通报的感情作出判断,但这紧张运用的是自然措辞处理、打算机视觉等技能

瞭望 | 人工智能可能有自立意识了吗?_人工智能_人类 智能写作

不同于当前依赖数据学习的技能路线,新一代人工智能强调在没有经由数据学习的情形下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互

当古人工智能管理面临的最大寻衅,是我们没有一套比较成熟的体系来规制其潜在的风险。
在发展科技的同时,必须同步发展我们的规制体系

“技能归根结底是由人类来发展和把控的。
人类和人工智能的未来,是由人类选择的。

文 |《瞭望》***周刊 于雪 魏雨虹

今年6月,美国谷歌公司软件工程师布莱克·勒莫因称措辞模型LaMDA涌现自我意识。
他认为,LaMDA拥有七八岁孩童的智力,并相信LaMDA正在争取自己作为一个人的权利。

LaMDA是谷歌去年发布的一款专门用于对话的措辞模型,紧张功能是可以与人类交谈。

为佐证不雅观点,勒莫因把自己和LaMDA的谈天记录上传至互联网。
随后,谷歌以违反保密协议为由对其停职。
谷歌表示,没有任何证据支持勒莫因的不雅观点。

事实上,“AI(人工智能)是否拥有自主意识”一贯争议不休。
这次谷歌工程师和LaMDA的故事,再次引发谈论。
人们想知道:人工智能技能究竟发展到了若何的阶段?是否真的具备自主意识?其剖断依据是什么?未来我们又该以若何的能力和心态与人工智能和谐共处?

人工智能自主意识之辨

勒莫因认为LaMDA具故意识的缘故原由有三:一是LaMDA以前所未有的办法高效、创造性地利用措辞;二是它以与人类相似的办法分享觉得;三是它会表达自察和想象,既会担忧未来,也会追忆过去。

受访专家见告《瞭望》***周刊,上述征象仅仅是由于LaMDA所基于的Transformer架构能够联系高下文,进行高精度的人类对话仿照,故能应对人类开放、发散的交谈。

至于人工智能是否已经具备自主意识,剖断标准如何,受访专家表示,对人类意识的探索目前仍属于科技前沿,尚未形成统一定义。

清华大学北京信息科学与技能国家研究中央助理研究员郭雨晨说:“我们说人有自主意识,是由于人知道自己在干什么。
机器则不一样,你对它输入内容,它只是依照程序设定进行反馈。

中国社会科学院科学技能哲学研究室主任段伟文认为,一样平常意义上,人的自我意识是指对自我具备觉知,但如何认识和理解人类意识更多还是一个哲学问题而不是科学问题,这也是很难解确定义人工智能是否具备意识的缘故原由。

被誉为“打算机科学与人工智能之父”的艾伦·图灵,早在1950年就曾提出图灵测试——如果一台机器能够与人类展开对话而不能被辨别出其机器身份,那么可以称这台机器具有智能。

这一设想随后被具化为,如果有超过30%参与测试的人以为自己在和人说话而非打算机,就可以认为“机器会思考”。

当前随着技能的发展,已经有越来越多的机器能够通过图灵测试。

但清华大学人工智能国际管理研究院副院长梁正见告《瞭望》***周刊,图灵测试只能证明机器在表象上可以做到让人无法分辨它与人类的不同,却不能证明机器能够思考,更不能证明机器具备自主意识。

段伟文表示,目前大体有两种办法剖断人工智能是否具有自主意识,一种以人类意识为参照,另一种则试图对机器意识进行全新定义。

若以人类意识为参照,要不雅观察机器能否像人一样整合信息。
“比如你在阳光下,坐在河边的椅子上看书,有树影落在脸上,有风吹来,它们会带给你一种整体的愉悦感。
而对机器来说,阳光、河流、椅子等,是分散的单一元素。
”段伟文说。

不仅如此,段伟文说,还要不雅观察机器能否像人一样将单一事宜放在全局中思考,作出符合全局利益的决策。

若跳出人类构建自主意识的范式,对机器意识进行重新定义,则须要明白意识的实质是什么。

段伟文见告,有理论认为如果机器与机器之间形成了灵巧、独立的交互,则可以称机器具备意识。
也有理论认为,可以不深究机器的内心,仅仅把机器当作行为体,从机器的行为表现判断它是否理解所干工作的意义。
“比如机器人看到人类喝咖啡后很精神,下次当它不雅观察到人类的怠倦,能不能想到要为人类煮一杯咖啡?”段伟文说。

但在段伟文看来,这些对机器意识进行重新定义的理论,其问题出在,即便能够证明机器可以交互对话、深度理解,但是否等同于具备自主意识尚未有定论。
“以LaMDA为例,虽然能够天生在人类看来更具意义的对话,乃至人可以与机器在对话中产生共情,但实在质仍旧是在数据采集、配对、筛选机制下形成的反馈,并不代表模型能够理解对话的意义。

换言之,即便人工智能可以对人类的措辞、表情所通报的感情作出判断,但这紧张运用的是自然措辞处理、打算机视觉等技能。

郭雨晨直言,只管在情绪打算方面,通过深度学习的推动已经发展得比较好,但如果就此说人工智能具备意识还有些一厢宁愿。
“把‘意识’这个词换成‘功能’,我会以为更加准确。

技能换道

有专家提出,若要机器能思考,先要办理人工智能发展的换道问题。

据理解,目前基于深度学习、由数据驱动的人工智能在技能上已经触及天花板。
一个突出例证是,阿尔法围棋(AlphaGo)在击败人类围棋天下冠军后,虽然财力和算力不断投入,但深度学习的回报率却没有相应增长。

一样平常认为,人工智能可被分为弱人工智能、通用人工智能和超级人工智能。
弱人工智能也被称为狭义人工智能,专攻某一领域;通用人工智能也叫强人工智能,紧张目标是制造出一台像人类一样拥有全面智能的打算机;超级人工智能类似于科幻作品中拥有超能力的智能机器人。

从家当发展角度看,人工智能在弱人工智能阶段勾留了相称永劫光,正在向通用人工智能阶段迈进。
受访专家表示,目前尚未有成功创建通用人工智能的成熟案例,而具备自主意识,至少须要发展到通用人工智能阶段。

梁正说,大模型、大数据的驱动让人工智能在对话的自然度、意见意义性上有了很大打破,但间隔具备自主意识还很远。
“如果你给这类措辞模型喂养大量关于自察、想象等与意识有关的数据,它便更随意马虎反馈与意识有关的回应。

不仅如此,现阶段的人工智能在一个繁芜、专门的领域可以做到极致,却很难完成一件在人类看来非常大略的事情。
“比如人工智能可以成为围棋高手,却不具备三岁小孩对陌生环境的感知能力。
”段伟文说。

谈及背后缘故原由,受访专家表示,第一是当古人工智能紧张与符号天下进行交互,在对物理天下的感知与反应上发展缓慢。
第二是数据学习让机器只能对见过的内容有合理反馈,无法处理陌生内容。
第三是在数据驱动技能路线下,人们通过不断调度、优化参数来强化机器反馈的精准度,但这种调适究竟有限。

郭雨晨说,人类在特界说务的学习过程中打仗的数据量并不大,却可以很快学习新技能、完成新任务,这是目前基于数据驱动的人工智能所不具备的能力。

梁正强调,不同于当前紧张依赖大规模数据演习的技能路线,新一代人工智能强调在没有经由数据演习的情形下,可以通过推理作出合理反应,从而与没有见过、没有学过的事物展开交互。

比较人类意识的自由开放,以往人工智能更多处在封闭空间。
只管这个空间可能足够大,但若超出设定范畴便无法处理。
而人类如果按照规则不能办理问题,就会修正规则,乃至发明新规则。

这意味着,如果人工智能能够超越现有学习模式,拥有对自身意识系统进行反思的能力,就会理解自身材系的基本性子,就有可能改造自身的意识系统,创造新规则,从而成为自己的主人。

“人工智能觉醒”背后

有关“人工智能觉醒”的谈论已不鲜见,但谷歌迅速否认的态度耐人寻味。

梁正表示:“如果不迅速驳斥指认,会给谷歌带来合规性方面的麻烦。

据理解,关于人工智能是否有自主意识的辩论并非纯挚技能领域的学术磋商,而关乎企业合规性的基本坚守。
一旦认定公司研发的人工智能系统涌现自主意识,很可能会被认为违反第2版《人工智能设计的伦理准则》白皮书的干系规范。

这一由美国电气和电子工程师协会2017年发布的规范明确:“根据某些理论,当系统靠近并超过通用人工智能时,无法预见的或无意的系统行为将变得越来越危险且难以纠正。
并不是所有通用人工智能级别的系统都能够与人类利益保持同等,因此,当这些系统的能力越来越强大时,应该谨慎并确定不同系统的运行机制。

梁正认为,为避免社会舆论可能的过度负面解读,担心大家认为它造就出了英国作家玛丽·雪莱笔下的弗兰肯斯坦式的科技怪物,以“不作歹”为企业口号的谷歌自然会予以否认。
“不仅如此,只管这一原则对企业没有逼迫约束力,但若被认为打破了底线,并对个体和社会造本钱质性侵害,很有可能面临高额的惩罚性赔偿,因此企业在合规性方面会更为谨慎。

我国也有类似管理规范。
2019年,国家新一代人工智能管理专业委员会发布《新一代人工智能管理原则——发展负任务的人工智能》,提出人工智能管理的框架和行动指南。
个中,“敏捷管理”原则紧张针对技能可能带来的新社会风险展开管理,强疗养理的适应性与灵巧性。

中国信息化百人会成员、清华大学教授薛澜在接管媒体采访时表示,当古人工智能管理面临的最大寻衅,是我们没有一套比较成熟的体系来规制其潜在的风险。
特殊是在第四次工业革命背景下,我国的人工智能技能和其他国家一样都处于发展期,没有现成的规制体系,这样就使得我们在发展科技的同时,必须同步发展我们的规制体系。
“这可能是人工智能发展面临最大的寻衅。

在梁正看来,目前很难断言新兴人工智能技能具有绝对风险,但必须布局合理的熔断、叫停机制。
在管理中既要具有一定的预见性,又不能扼杀创新的土壤,要在企业诉求和公共安全之间找到得当的平衡点。

毕竟,对人类来说,发展人工智能的目的不是把机器变成人,更不是把人变成机器,而是办理人类社会发展面临的问题。

从这个角度来说,我们须要的或许只是帮助人类而不是代替人类的人工智能。

长沙中原实验学校学生和机器狗互动(2022年6月22日摄) 薛宇舸摄/本刊

为了人机友好的未来

确保通用人工智能技能有益于人类福祉,一贯是人工智能伦理构建的前沿。

薛澜认为,在科技领域,很多技能都像***的两面,在带来正面效应的同时也会存在风险,人工智能便是个中一个比较突出的领域。
如何在促进技能创新和规制潜在风险之间寻求平衡,是科技伦理必须关注的问题。

梁正提出,有时技能的发展会超越人们预想的框架,在不自觉的情形下涌现与人类利益不一致乃至相悖的情形。
著名的“曲别针制造机”假说,即描述了通用人工智能在目标和技能都无害的情形下,对人类造成威胁的情景。

“曲别针制造机”假说给定一种技能模型,假设某个人工智能机器的终极目标是制造曲别针,只管看上去这一目的对人类无害,但终极它却利用人类无法比拟的能力,把天下上所有资源都做成了曲别针,进而对人类社会产生不可逆的侵害。

因此有不雅观点认为,创造出法力高超又杀不去世的孙悟空本身便是一种不顾后果的冒险行为。

与其对立的不雅观点则认为,目前这一担忧为时尚早。

“我们对到底什么样的技能路线能够发展出具备自主意识的人工智能尚无共识,现在评论辩论‘禁止发展’,有种空中楼阁的意味。
”梁正说。

商汤科技智能家当研究院院长田丰见告《瞭望》***周刊,现实中人工智能技能伦理风险管理的关键,是家当能够在“预判戒备-运用处景-用户反馈-产品改进”中形成市场反馈机制,匆匆成伦理风险识别与敏捷管理。
同时,企业内部也需建立完全的科技伦理自律机制,通过伦理委员会、伦理风控流程平台将伦理风险把控落实到产品全生命周期中。

郭雨晨说,人工智能技能发展到目前,仍始终处于人类可控状态,而科技发展的过程本来就伴随对衍生问题的预判、创造和解决。
“在想象中的人工智能自主意识涌现以前,人工智能技能脚踏实地的发展,已经造福人类社会很多年了。

在梁正看来,人与人工智能在未来会是一种互助关系,各自具备对方无法达成的能力。
“技能归根结底是由人类来发展和把控的。
人类和人工智能的未来,是由人类选择的。