AI研习丨优秀博士学位论文:面向互联网金融微不雅观对象的数据挖掘_互联网_用户
近些年,互联网金融市场的发达发展对传统金融行业造成了巨大冲击;与此同时,互联 网金融市场中积累的海量用户和交易数据为研究智能化、个性化、精准化的做事供应了 支持。本文通过大数据驱动的研究方法,分别针对互联网金融平台中的参与三方——用 户、金融产品和市场管理进行了系统性的研究。在真实互联网金融数据上的实验结果验 证了本研究中所提出方法的有效性。
关 键 字
互联网金融;微不雅观工具;数据挖掘;行为剖析;推举系统
0弁言
互联网金融是指传统金融机构或者互联网企 业利用互联网等信息技能实现资金融通、支付、 投资和信息中介等做事的新型金融业务模式。互 联网金融是目前金融科技(Fintech)领域的主要 形态和研究工具之一。比较于传统金融,互联网金融具有效率高、本钱低、范围广、操作方便等 上风。但是,互联网金融模式也在一定程度上造 成了金融市场门槛降落、市场流动性增大,以及 监管困难等问题。
互联网金融市场的易变性和业务繁芜性对传 统经济学、金融学的研究范式提出了寻衅。与此 同时,互联网金融市场中积累的海量用户和交易数据,也为研究者深入探索互联网环境下金融市场的潜在代价,办理互联网金融市场中存在的问题,开拓大数据驱动的聪慧金融做事带来了全新的机遇。
基于以上背景,本文调研了互联网金融的现状,并采取数据驱动的研究方法对互联网金融市场的紧张微不雅观工具(用户、产品和市场管理)分别开展了研究事情。本文紧张事情与贡献可以概括如下:在用户方面,进行了智能投顾方法研究。详细地,针对用户如何选择借贷项目的问题,分别提出了基于风险管理的投资推举行法和基于多目标优化的组合选择方法。
在金融产品方面,进行了产品和市场的建模与剖析研究。详细地,针对互联网金融产品和市场动态,分别提出了层次韶光序列预测方法和基于隐马尔可夫模型的市场状态建模方法。
在市场管理方面,进行了用户生命周期管理 研究。详细地,针对微不雅观用户流动性,提出了面 向交易行为和用户流失落的联合生存剖析方法。
1 智能投顾方法研究
1.1 基于风险管理的投资推举行法
在互联网金融市场中,用户面对纷繁多样的金融产品,难以做出高效的投资理财决策。为帮助用户投资决策,可以给每个投资用户天生个性化推举。
针对互联网金融市场,本文提出了基于风险管理的投资推举行法,如图1所示。该方法对每一个投资者配备个性化投资推举组合,使其能够匹配用户的个性化偏好,并且达到降落风险的目的。详细来说,研究中首先提出了产品和投资者画像建模方法,并在此根本上,通过同时考虑投资者履历和偏好办理“选择哪些产品”的问题。进一步,根据投资组合理论,将投资者当前已经持有的投资产品纳入考虑,设计优化过程对每个候选推举产品进行权重分配,达到最小化投资者风险的目的。
为评估所提出的方法,本文在Prosper数据 集上进行了大量实验,结果表明所提出的方法能 够在知足用户偏好的同时,提高用户的投资收益。
1.2 基于多目标优化的投资组合选择方法
事实上,用户在实际投资决策中的考虑非常繁芜,并且会受到平台交易机制的影响。目前,很多互联网金融平台(特殊是一些网络借贷平台)采取基于拍卖的交易机制。在这类平台上,理性用户在投资决策过程中每每追求多种目标,例如风险(产品违约概率)和交易效率(产品成功融 资概率和投标中标概率)等。其余,很多用户在投资中会同时选择多个产品作为组合投资。
针对这类市场,本文提出了一种基于多目标优化的组合选择方法,如图2所示。该方法能够在知足出借人利率偏好的根本上,同时最小化投资风险(产品违约概率)和最大化交易效率(成功融资概率、中标概率)。详细地, 研究中首先识别出当前市场中的生动出借者, 作为后续选择做事的目标客户。然后,从三个目标维度对拍卖中的借款产品进行评估。本事情中同时布局了借款产品的静态和动态特色, 并且采取梯度提升决策树(GBDT)领悟静态和 动态特色,提高评估预测效果。末了,给定识别出的生动出借用户和评估后的产品,设计两种产品组合选择策略,即加权目标优化策略和多目标优化策略。加权目标优化策略利用一个目标权重向量将多个目标整合为单一目标,然 后给每个出借人推举在该目标下唯一的最优借款产品组合。而多目标优化策略则同时优化多个目标,并且得到每个出借人在基于帕累托最优情形下的借款产品组合解集。详细地,基于 多目标优化的组合选择策略如下。
2.2 基于贝叶斯隐马尔可夫的市场状态建模方法
前面先容了互联网金融市场融资动态预测研究;然而,如何根据市场动态不雅观察变量挖掘和建模隐含的市场状态(例如火爆、冷门),还短缺相应的研究。事实上,由于在线金融市场的颠簸性和流动性非常高,识别市场状态是非常必要的。本研究通过在不同假设下扩展贝叶斯隐马尔可夫模型专门研究了网络借贷中市场状态建模 问题。详细来说,首先利用马尔可夫链构造来仿照市场状态的动态和顺序特色。在这里,假设借款产品市场状态受其自身属性影响,当前状态仅由其先前一个状态决定。基于此假设,本文提出 了建模市场状态的L-BHMM(Listing-Bayesian Hidden Markov Model)模型。但是,现实调查 结果表明,市场状况可能同时会受到市场形势的影响。因此,本文进一步设计了更全面的模型LM- BHMM(Listing and Market-Bayesian Hidden Markov Model)。L-BHMM和LM-BHMM 都可 以连接借款产品的隐蔽市场状态和出借人的投标行为。
为了评估研究中所提出的方法,在Prosper 数据集上进行了实验,其结果充分地解释了所设计模型在市场状态建模及其干系运用任务上的有效性。
3 面向交易和离场行为的联合生存剖析
互联网金融用户的流动性非常大,特殊是在基于捐赠类众筹中,由于平台非营利性,用户流失落(离场行为)问题更加严重。剖析影响用户流失落的缘故原由,进而预测用户流失落,是平台管理中非常主要的内容。研究中详细形式化重复捐赠交易和捐赠者保留两个协同预测任务。该研究详细目的在于预测捐赠者未来每个韶光段是否会进行捐赠交易,以及捐赠者到未来某个韶光是否仍旧生动在该平台上。事实上,捐赠者保留问题可以用生存剖析技能办理。然而,传统的生存剖析模型 善于处理变量之间的线性关系。为了建模捐赠者保留问题中繁芜的变量关系并且充分利用异构的特色,本文提出告终合深度生存模型(JDS)来 联合学习两个协同任务。如图4所示,JDS 紧张包含输入组件(Input)、表示组件(Representation) 和预测组件(Prediction)三个组件。详细地,输 入组件卖力初步地提取所有的异构特色;表示组件用来进一步学习每个特色向量表示;预测组件分别给出在两个任务上的结果。
捐赠者的重复捐赠行为与他在平台上的去留高度干系;其余,JDS模型的两层预测输出共享相同的特色输入和表示。因此,两个目标上的优化方向一定程度上是同等的。受到这些特点启示,本文开拓了交替优化算法在两任务上联合演习JDS模型。
为了评估研究中所提出的方法,在众筹平台Kiva数据集上进行了剖析和实验,其结果显著地表明了所提出方法在剖析和预测重复捐赠交易行为和客户保留问题上的有效性。
4 结束语
本体裁系性地开展了针对互联网金融微不雅观工具的数据挖掘方法及运用的系列探索性研究事情。详细地,针对互联网金融市场紧张微不雅观工具(用户、 产品和市场管理),分别进行了研究。在微不雅观用户方面,提出了基于风险管理的投资推举行法和基于多目标优化的投资组合选择方法;在金融产品方面, 提出了面向融资动态的层次韶光序列预测方法和基于贝叶斯隐马尔可夫的市场状态建模方法;在市场管理方面,提出了面向捐赠行为和用户流失落的联合生存剖析方法。通过在多个不同类型、具有代表性的互联网金融平台数据集上的实验,验证了本研究 中所提出系列方法的有效性。
(参考文献略)
选自《中国人工智能学会通讯》
2020年 第10卷 第2期 精良博士学位论文精华版
本文系作者个人观点,不代表本站立场,转载请注明出处!