演习一个大略单纯AI对话交互式机器人须要什么?

“图灵测试不重要”一个违背机械人界祖宗的决定_智能_图谱 云服务

一篇文档+3分钟足矣。

在今年的天下人工智能大会(WAIC)上,我算是见识到了。
全体开拓过程没有用到一句代码。

先上传一篇Word格式文档:

不到3分钟的韶光里,一个大略单纯AI客服快速天生,然后你就可以和“她”谈天了:

这是一家供应对话AI平台的公司的最新产品:输入文档便可让AI自动天生知识图谱,知其然更知其以是然,成为一个真正节制知识的AI。

而且这家公司的CEO还撂下“狠话”:图灵测试不主要。

“对话AI落地运用须要产生代价,须要办理企业或个人利用上的问题,而不是在是否通过图灵测试的问题上纠结。

这家公司便是由前微软(亚洲)互联网工程院副院长简仁贤师长西席创办的竹间智能,这款前所未见的AI新作便是竹间推出的Gemini(Knowledge Factory)知识工程平台。

“虽然是机器人,但我们确实办理了问题。

既然AI能提高效率,为什么一定要纠结让谈天机器人通过图灵测试呢?

或许过去家当界真的走了弯路。

办理问题才是王道

3年前,有个谈天机器人算是小范围通过了图灵测试,那便是谷歌推出的Duplex,一个可以帮用户预订餐厅的AI。
餐厅店员听到Duplex,乃至认为便是顾客本人在订位。

但是3年后呢?除了谷歌之外,我们险些看不到哪个商用的对话AI通过了图灵测试。

毕竟不是每个企业都如谷歌般财大气粗,挥着大量的数据集和算力把AI演习到以假乱真。

图灵测试早已不再是考验机器人智能的唯一标准,是时候转变不雅观念了:“办理问题才是王道!

在这个问题上,学术界和家当界默契地达成了同等。

最近,华盛顿大学和艾伦人工智能研究院提出:人工审核不应该还是自然措辞天生(NLG)的“黄金标准”,AI天生文本更主要的是内容是否精确、合乎逻辑。

企业当然也是这么想的,现阶段通过图灵测试不经济也不现实,既然人们已经接管了和AI对话,那么对话到底有没有“机器感”已经没那么主要了。

海内类似的呼声也越来越多。
竹间智能的创始人兼CEO简仁贤同样也认为:关注AI的“实用性”。

让AI具备认知智能

要让AI实用,就必须要让它节制知识举一反三。

给AI一篇骨枢纽关头文档,让它变成康健顾问。
倘若把医学文档换成商品描述、解释书和用户评论,那么就可以得到一个更智能的电商推举系统,比如输入“防风效果最好的夹克”来精确探求符合需求的商品,而不是输入商品名称搜索。

而这仅仅是一篇文章产生的效果。
可以想象,当你拥有一个储量丰富的知识文库,包含PDF、Word、PPT平分歧类型、不同格式的文档,把他们统统输入到这个平台里,就可以得到一个针对特定行业的全能咨询师。

现实问题是,许多企业并不缺少巨量文档,缺少的是挖掘数据的能力。
如果能把信息挖掘出来形成知识图谱,就可以产生非常大的浸染。

而知识图谱的浸染,便是能从海量数据中简洁快速地找到回答繁芜业务问题的答案。

这些年,我们看到了很多打算机视觉(CV)、自然措辞处理(NLP)这类感知AI的广泛商用,却较少看到像知识图谱这类认知AI的商用,为什么?

“一个文档可能有2万多字、10万多字,你可能有2万个文档、5万个文档须要去处理,怎么处理呢?传统的知识图谱技能是没有办法做到的,必须要成千上万人,用人工去看文档,一个字一个字看下来再去建图谱,这个不现实。

竹间智能CEO简仁贤阐明道。

以是,市场急需一个能够自动化构建知识图谱的工具。

而竹间智能给出了自己的办理方案,便是一个自动化平台——Gemini(Knowledge Factory)知识工程平台,从读文档、自动构建图谱到机器人自动回答,全体流程各环节无缝对接,只须要很少的人工干预。

无论你是来自医疗、制造业,还是金融、电商领域,都可以利用Gemini平台打造属于自己行业的知识图谱。

“知识图谱技能可以让AI更加高效。
在机器学习和深度学习方面减少很多不必要的数据标注以及演习,让深度学习模型具备可阐明性,也可以赞助多任务的机器学习,从而提升整体效率。

简仁贤说。

这便是知识图谱在当今AI落地中的一大紧张上风。

从对话AI到知识图谱

竹间智能“野心”不小,而Gemini平台的出身也不是一挥而就,乃至曾走过“弯路”。

2015年,从微软离职的简仁贤创立了竹间智能,公司最初选择了当时最为热门的面向消费者市场的谈天机器人。

事实证明,这是一条选手浩瀚且难以差异化竞争的道路。

面对2C市场商业化的难题,竹间智能在2016年果断转变方向,进军2B市场,为企业开拓0代码的对话AI平台。
从那时起,竹间智能就已在开拓知识图谱技能。

一年前竹间智能累历年夜量落地履历,发布了全新升级的Bot Factory,到现在,公司已经创建了6大技能、6大平台产品、6大行业办理方案。

不过从另一种角度来看,竹间智能也并未走弯路,而是带着2C的创业初期空想,一起探索,结合各行业实际需求,找到了B2B2C的宽阔道路。

凭借过去在NLP技能能力上的沉淀,竹间智能将知识图谱的推理能力结合自然措辞理解能力,帮助企业更快地找到答案。

在成熟的对话式交互短文本NLP能力之上,结合机器阅读和知识工程的长文本NLP能力, 使机器人能处理繁琐且须要大量知识储备的业务,以知识图谱为现在的商用AI授予认知智能,实现知识管理、运营做事和智能运用的全链条打通。

其余,竹间智能今年还完成了“ALL-in-Cloud”的全面云化策略,将六大核心产品平台悉数升级为云平台,可知足企业公有云、私有云及稠浊云的多种支配哀求,应对行业云化趋势。

通过适配不同运用处景的需求,竹间智能的产品已经被数百家大型企业所采取。

认知智能未来可期

从创业至今6年,竹间智能的技能逐渐得到了大厂认可,迄今为止已有金融、互联网、政务、汽车等行业的数百家大型企业利用其做事。

C端用户虽然不是竹间业务的直接手事工具,你却可能早已在不知不觉中用过竹间的技能,华为、OPPO手机中的语音助手就有竹间的技能支持。

简仁贤表示,某消费者电子产品的公司也正在用竹间智能来改进其产品。
一个对话AI如何改进电子科技产品呢?

原来电子产品公司依赖竹间智能的Gemini知识工程平台,打造VOC(Voice of Customer)系统,聆听客户之声,全面网络电商平台上的用户评论,洞察度量用户的产品利用与购物体验,从而对下一代产品进行改进。

不仅能上天,竹间的AI技能还扎根老百姓,上海各地街道居委也在用竹间智能。

自从去年新冠疫情爆发以来,竹间智能利用语音机器人代替人工帮助徐汇区完成了外来务工人群的流调事情,通过2万通/日的防疫电话拨打,AI自动记录职员所在地、来访地、身体等信息,巩固防疫堡垒。
今年竹间智能接到200万个接种疫苗关照电话的需求,AI机器人快速搭建落地、即刻投入运行,极大地减少了社区一线做事职员的事情量。

值得一提的是,在WAIC 2021上,中国信通院与竹间智能联合发布了《2021认知智能发展研究报告》,在这份报告中,中国信通院提出认知智能未来的三大趋势:

一、认知智能将进一步成为AI家当发展热点;

二、行业知识图谱和关系挖掘将推动认知智能在行业中更深层次的落地运用;

三、自动化、多模态、标准化的特色进一步凸显,紧张表现在知识工程流程将加快实现自动化。

简仁贤对认知智能的这条赛道充满信心。
认知智能未来将开释出更大的代价,受益的也不仅仅是竹间,而是万万千万家企业,更是无数的用户和消费者。

— 完 —

量子位 QbitAI · 号签约

关注我们,第一韶光获知前沿科技动态