人工智能可分辨健康组织与癌组织_癌症_病理
一贯以来,由于须要大量手动标注数据集,阻碍了病理学干系系统的开拓及其在临床实践中的运用。于是,医学界人士和工程师们希望能利用人工智能改进这一状况。
为实现这一目标,美国纪念斯隆凯特琳癌症中央科学家领导的研究团队,这次构建了一个大规模数据集——包括来自逾1.5万名前列腺癌、皮肤癌、乳腺癌患者的逾4.4万例组织切片,并建立无需病理学家人工标注,就能识别肿瘤细胞的深度学习模型。
这种深度学习算法能帮病理学家打消最多75%的无用信息组织样本,同时确保100%的敏感性。研究职员表示,该系统能够以前所未有的规模演习准确的分类模型,为临床实践中计算决策支持系统的支配奠定了根本。与此同时,其未来也将会用于赞助癌症中央的病理诊断,提高常规临床实践的效率。
近年来,人工智能在癌症诊断领域取得了越来越多的打破,譬如圣地亚哥海军医学中央和谷歌AI的研究职员开拓出的系统,就可以利用癌症检测算法来自主评估淋巴结活检,从而对转移性乳腺癌患者的诊断和治疗进行更好的决策;而纽约大学医学院研究团队开拓的机器学习程序,不仅能够以97%的准确率确定患者的肺癌类型,还可以识别导致非常细胞成长的变异基因。
本文系作者个人观点,不代表本站立场,转载请注明出处!